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1 The Martingale Central Limit Theorem

1.1 Motivation

The central limit theorem says something like

Sn√
n

d−→ N (0, 1).

We have also learned about Donsker’s theorem, which extends this idea to Brownian mo-
tion.

Sn is not necessarily small. If Xi are iid, then E[Sn] = nE[Xi]. The central limit
theorem tells us that the fluctuation of Sn is much less than nE[X]. We know that
E[Sn] ∼ n and Var(Sn) ∼ n. This is because

E

( n∑
i=1

Xi − E[Xi]

)2
 =

∑
i,j

E[(Xi − E[Xi])(Xj − E[Xj ]])],

where these terms are 0 if i 6= j by independence. So the property comes from the incre-
ments Xk = Sk+1 − Sk.

But the situation is more complicated for martingales. Let S1, S2, . . . be a martingale.
Then if

1

n

n∑
k=1

E[(Sk+1 − Sk)2 | Fk]→ c,

then
Sn√
n
∼ N (0, 1).

In the iid case, c = 1. If we define Xk = Sk+1−Sk, then Xk and X` are not independent.
So this result is nontrivial (and maybe even unintuitive). The idea is that under certain
conditions, the Xk are independent.
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1.2 The Markov chain CLT and martingale CLT

Theorem 1.1 (Martingale CLT). Let {Sk}k be a martingale, an dlet Xk = Sk+1 − Sk.
Suppose that ∑dn·te

k=1 E[X2
k | Fk]

tn
→ 1 ∀t.

Then
S(n·)√
n
→ B(·).

Compare this to the Markov chain central limit theorem. Let X1, X2, . . . be a Markov

chain with a stationary distribution π. If we start the chain at π, then X1, X2, . . .
d
=

X2, X3, . . . ; i.e. the sequence is stationary. The ergodic theorem says that 1
n

∑n
k=1 f(Xk)→

Eπ[f(X1)]; i.e. the sequence is ergodic.

Theorem 1.2 (Markov chain CLT). Let {Xn}n be an ergodic, stationary sequence with
E[Xn | Fn−1] = 0 and E[X2

i ] = 1. Then

Sn√
n

d−→ N (0, 1).

The central limit theorem for Markov chains is a special case of the theorem for mar-
tingales. Let’s prove this assuming the martingale CLT.

Proof. We want to show that

1

n

∑
k

E[X2
k | Fk−1]→ 1.

Define uk := E[X2
k | Fk−1]; this is also an ergodic, stationary sequence. So the property in

the martingale CLT is satisfied.

Now let’s prove the martingale CLT.

Proof. If {Sn}n is a martingale with S0 = 0 (and E[S2
n] < ∞), then we can define stop-

ping times T1, . . . , Tn such that (S1, . . . , Sn)
d
= (BT1 , . . . , BTn). This is a repeated use of

Skorokhod’s representation theorem. We then find that

E[X2
k | Fk−1] = E[Tk − Tk−1 | FBTk−1

].

If Tn ≈ n, we are done. We have Tn =
∑

k Tk − Tk−1 and
∑

k E[Tk − Tk−1 | FTk−1
] = n. If

we can show that both are close, we will be done.
Let τk = Tk − Tk−1, and let Vk = E[Tk − Tk−1 | FTk−1

]. We want to show that
E[(
∑

k τk − Vk)2] = O(n). If k < `,

E[(τk − E[τk | FTk−1
)(τ` − E[τ` | FT`−1

])] = E[τkτ`]− E[τ` E[τk | FTk−1
]]− E[τl E[τ` | FT`−1

]
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+ E[E[τ` | FT`−1
]E[τk | FTk−1

]]

The third term becomes −E[τkτ`]. We can calculate the other terms similarly.

= 0.
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